Effect of $CO₂$ on the Conversion of H₂/CO to Methanol over Copper-Chromia Catalysts

Recently, Klier *et al.* (1) reported that the addition of $CO₂$ to the H₂/CO synthesis gas feed stream enhanced the specific rate of CH30H formation. The catalytic activity passed through a maximum at \sim 2% CO₂ [total composition 70% H_2 , 30% (CO + $CO₂$]. Klier *et al.* concluded this was a true promoter effect $(CO₂$ was neither a reactant nor a suppressor of the CO disproportionation reaction), whereby the oxidizing potential of $CO₂$ stabilized $Cu⁺$ from reduction to Cu^0 in the reducing $H₂/CO$ environment. Because CO adsorption and reduction to CH,OH was presumed to occur on Cu+ ions dissolved in the ZnO lattice, they stated there should be a direct relationship between the surface concentration of Cu+ and methanol activity. Further, a maximum in CH₃OH activity was observed as the concentration of $CO₂$ in the feed stream was varied from 0 to 30%; this behavior was attributed to the balance between the promoting and inhibiting effects of $CO₂$, the latter resulting from the competitive adsorption of $CO₂$ and CO on catalytically active sites.

In a prior note (2) , we reported that Cu- Cr_2O_3 was a selective CH₃OH catalyst and that the rate of $CH₃OH$ production was directly related to the amount of stable surface Cu⁺ sites, as detected by X-ray photoelectron spectroscopy (XPS). However, the effect of $CO₂$ on the concentration of $Cu⁺$ sites and subsequent $CH₃OH$ activity has not yet been explored for $Cu-Cr₂O₃$ catalysts. Therefore, we report here the effects of $CO₂$ addition to $H₂/CO$ (synthesis gas) on CH30H formation and on surface $Cu⁺ concentration for Cu-Cr₂O₃ catalysts.$

The preparation of Cu–Cr₂O₃ (Cu/Cr = $1/$

1) and the XPS technique (and spectra interpretation) were detailed earlier (2). Prior to evaluation of catalytic activity and XPS analysis, the catalyst was calcined at 350°C for 2 h in flowing air and then pretreated at 270°C for 2 h in flowing H_2 at 1 atm pressure. XPS measurements were made in a combined 1-atm reaction chamber and ultrahigh-vacuum analysis chamber.

The steady-state catalytic activities were determined in a single-pass flow reactor; differential CO conversion levels of $\langle 2\% \rangle$ were maintained during reaction. The reaction conditions were 27O"C, 750 psig overall pressure, and feed compositions of 67% H₂, 20% CO, 13% (CO₂ + He). With He as a diluent, the H_2 and CO partial pressures were kept constant as the $CO₂$ partial pressure was varied.

Temperature-programmed desorption (TPD) was used to examine the possibility of competitive $CO₂$ adsorption on CO adsorption sites. The TPD used was a dynamic one in which He at 80 (STP) ml/min was used as a sweep gas to transfer the desorbed gases from the $Cu-Cr₂O₃$ surface to the differentially pumped inlet system of a quadrupole mass spectrometer. Before the TPD spectra were run, CO or $CO₂/CO$ were chemisorbed onto the H_2 -reduced and vacuum-pretreated Cu–Cr₂O₃ surface at 25 \degree C from flowing streams of CO and 5% $CO₂/$ 95% CO, respectively. Reversibly adsorbed CO and $CO₂$ were removed from the surface by evacuating to 10^{-2} Torr before the TPD experiments were conducted.

For $Cu-Cr₂O₃$ the CH₃OH activity did not increase when $CO₂$ was added to the syngas feed (Fig. 1). Rather, the rate of CH₃OH formation declined \sim 30% when

FIG. 1. The $CO₂$ dependency for CH₃OH formation over Cu-Cr₂O₃ and Cu-ZnO (Klier). Reaction conditions for Cu-Cr₂O₃: 750 psig, 270°C, 67% H₂, 20% CO, 13% ($CO₂ + He$). Reaction conditions for Cu-ZnO: 1000 psig, 250°C, 70% H₂, 30% (CO + CO₂). Selectivity to CH₃OH is greater than 93% for Cu–Cr₂O₃.

 $CO₂$ at levels as low as 2% was added. The activity remained essentially constant as the $CO₂$ level was increased to 13%, suggesting a pseudo-zero-order $CO₂$ dependency. The results of Klier et al. (1) for Cu- ZnO (Cu/Zn = 3/7) (Fig. 1) are in contrast to those for $Cu-Cr₂O₃$ and reveal a maximum in activity at \sim 2% CO₂.

The XPS results in Fig. 2 also show that the addition of CO₂ to the feed had no effect on the amount of stable Cu⁺ present on the $Cu-Cr₂O₃$ surfaces. Given the direct relationship between CH₃OH activity and the

FIG. 2. Cu $L_3M_{4,5}M_{4,5}$ X-ray-induced Auger spectra for 1:1 Cu-Cr₂O₃ catalyst calcined in air at 350°C and heated in flowing H_2 at 1 atm and 270°C: solid line represents subsequent reaction in flowing 67% H₂/33% CO; dashed line represents reaction in flowing 67% H₂/ 20% CO/13% CO2.

FIG. 3. Temperature-programmed desorption of CO (a) and 5% $CO₂/95\%$ CO (b) from Cu-Cr₂O₃. Note the scaling factor difference for CO₂ in (a). Mass fragmentation of $CO₂$ to form $CO + O$ has been taken into account for the CO⁺ peak.

concentration of stable surface $Cu⁺$ sites established earlier (2), we would not expect an increase in CH₃OH activity for Cu- Cr_2O_3 as CO_2 is added to the feed stream.

Thus, the Cu^+ responsible for $CH₃OH$ formation in $Cu-Cr₂O₃$ would appear to be more stable than the Cu⁺ present in Cu-ZnO. Klier et al. (1) discuss the active Cu⁺ in Cu–ZnO as being dissolved in the ZnO lattice, presumably as Cu⁺ ions substitutionally and/or interstitially positioned in the ZnO lattice. The concentration of this type of $Cu⁺$ may be sensitive to the $CO/CO₂$ ratio, which can alter the concentrations of lattice oxygen and oxygen vacancies in the ZnO lattice. On the other hand, Courty et al. (3) have postulated that the active $Cu⁺$ present in $Cu-Cr₂O₃$ -containing catalysts exists in a Cu⁺-chromite phase. It would be expected that significant concentrations of $Cu⁺$ should be more stable when $Cu⁺$ is present as a surface compound than when $Cu⁺$ is in a ZnO lattice, given the limited solubility of Cu^+ in the ZnO lattice (1).

Finally, comparison of the TPD spectra in Fig. 3a with those in Fig. 3b reveals that $CO₂$ is competitively adsorbed on CO adsorption sites, in agreement with the observation of Klier et al. (1) for Cu-ZnO. The addition of 5% $CO₂$ to CO results in a significant $CO₂$ desorption peak at the same temperature as for CO desorption $(T \sim 135^{\circ}C)$. Thus, $CO₂$ at levels as low as 5% competes

drops sharply for $CO₂$ levels as low as 2% . tion. Additional evidence of CO-site blockage by $CO₂$ can be found by examining the magnitudes of the CO desorption curves in Fig. 3 ; the amplitude of the CO desorption curve when $CO₂$ is present in the feed stream is \sim 25% smaller than when CO₂ is not present.

The high-temperature $CO₂$ desorption curves centered at \sim 280 and 300°C most likely represent $CO₂$ desorption from noncatalytic sites present on Cr_2O_3 or Cr_2O_3 like surfaces, as discussed by Burwell and co-workers (4).

In summary, the stability of $Cu⁺$ responsible for $CH₃OH$ formation in $Cu-Cu₂O₃$
cotalizate is independent of the presence of Research Laboratories catalysts is independent of the presence of *Research Laboratories*

Eastman Kodak Company $CO₂$ in the feed stream. Catalytically, the presence of $CO₂$ in the syngas inhibits the rate of CH₃OH formation, owing to the Received September 20, 1983

favorably with CO for adsorption sites, ex- noncatalytic, competitive adsorption of plaining why the CH₃OH activity in Fig. 1 $CO₂$ on Cu⁺ sites needed for CO adsorp-

REFERENCES

- 1. Klier, K., Chatikavanij, R. G., Herman, R. G., and Simmons, G. W., J. Catal. 74, 343 (1982).
- 2. Apai, G., Monnier, J. R., and Hanrahan, M. J., J. Chem. Soc. Chem. Commun. 212 (1984).
- 3. Courty, P., Durand, D., Freund, E., and Sugier, A., J. Mol. Catal. 17, 241 (1982).
- 4. Burwell, R. C., Jr., Haller, G. L., Taylor, K. C., and Read, J. F., "Advances in Catalysis," Vol. 20, p. 1. Academic Press, New York, 1969.

J. R. MONNIER G. APAI M. J. HANRAHAN

Rochester, New York 14650