Effect of CO₂ on the Conversion of H₂/CO to Methanol over Copper–Chromia Catalysts

Recently, Klier *et al.* (1) reported that the addition of CO_2 to the H₂/CO synthesis gas feed stream enhanced the specific rate of CH₃OH formation. The catalytic activity passed through a maximum at $\sim 2\%$ CO₂ [total composition 70% H₂, 30% (CO + (CO_2)]. Klier *et al.* concluded this was a true promoter effect (CO₂ was neither a reactant nor a suppressor of the CO disproportionation reaction), whereby the oxidizing potential of CO₂ stabilized Cu⁺ from reduction to Cu^0 in the reducing H₂/CO environment. Because CO adsorption and reduction to CH₃OH was presumed to occur on Cu⁺ ions dissolved in the ZnO lattice, they stated there should be a direct relationship between the surface concentration of Cu⁺ and methanol activity. Further, a maximum in CH₃OH activity was observed as the concentration of CO₂ in the feed stream was varied from 0 to 30%; this behavior was attributed to the balance between the promoting and inhibiting effects of CO_2 , the latter resulting from the competitive adsorption of CO₂ and CO on catalytically active sites.

In a prior note (2), we reported that Cu– Cr₂O₃ was a selective CH₃OH catalyst and that the rate of CH₃OH production was directly related to the amount of stable surface Cu⁺ sites, as detected by X-ray photoelectron spectroscopy (XPS). However, the effect of CO₂ on the concentration of Cu⁺ sites and subsequent CH₃OH activity has not yet been explored for Cu–Cr₂O₃ catalysts. Therefore, we report here the effects of CO₂ addition to H₂/CO (synthesis gas) on CH₃OH formation and on surface Cu⁺ concentration for Cu–Cr₂O₃ catalysts.

The preparation of $Cu-Cr_2O_3$ (Cu/Cr = 1/

1) and the XPS technique (and spectra interpretation) were detailed earlier (2). Prior to evaluation of catalytic activity and XPS analysis, the catalyst was calcined at 350° C for 2 h in flowing air and then pretreated at 270° C for 2 h in flowing H₂ at 1 atm pressure. XPS measurements were made in a combined 1-atm reaction chamber and ultrahigh-vacuum analysis chamber.

The steady-state catalytic activities were determined in a single-pass flow reactor; differential CO conversion levels of <2% were maintained during reaction. The reaction conditions were 270°C, 750 psig overall pressure, and feed compositions of 67% H₂, 20% CO, 13% (CO₂ + He). With He as a diluent, the H₂ and CO partial pressures were kept constant as the CO₂ partial pressure was varied.

Temperature-programmed desorption (TPD) was used to examine the possibility of competitive CO₂ adsorption on CO adsorption sites. The TPD used was a dynamic one in which He at 80 (STP) ml/min was used as a sweep gas to transfer the desorbed gases from the Cu-Cr₂O₃ surface to the differentially pumped inlet system of a quadrupole mass spectrometer. Before the TPD spectra were run, CO or CO₂/CO were chemisorbed onto the H2-reduced and vacuum-pretreated Cu-Cr₂O₃ surface at 25°C from flowing streams of CO and 5% CO₂/ 95% CO, respectively. Reversibly adsorbed CO and CO₂ were removed from the surface by evacuating to 10^{-2} Torr before the TPD experiments were conducted.

For Cu-Cr₂O₃ the CH₃OH activity did not increase when CO₂ was added to the syngas feed (Fig. 1). Rather, the rate of CH₃OH formation declined \sim 30% when

FIG. 1. The CO₂ dependency for CH₃OH formation over Cu–Cr₂O₃ and Cu–ZnO (Klier). Reaction conditions for Cu–Cr₂O₃: 750 psig, 270°C, 67% H₂, 20% CO, 13% (CO₂ + He). Reaction conditions for Cu–ZnO: 1000 psig, 250°C, 70% H₂, 30% (CO + CO₂). Selectivity to CH₃OH is greater than 93% for Cu–Cr₂O₃.

CO₂ at levels as low as 2% was added. The activity remained essentially constant as the CO₂ level was increased to 13%, suggesting a pseudo-zero-order CO₂ dependency. The results of Klier *et al.* (1) for Cu–ZnO (Cu/Zn = 3/7) (Fig. 1) are in contrast to those for Cu–Cr₂O₃ and reveal a maximum in activity at ~2% CO₂.

The XPS results in Fig. 2 also show that the addition of CO_2 to the feed had no effect on the amount of stable Cu^+ present on the $Cu-Cr_2O_3$ surfaces. Given the direct relationship between CH₃OH activity and the

FIG. 2. Cu $L_3M_{4,5}M_{4,5}$ X-ray-induced Auger spectra for 1 : 1 Cu–Cr₂O₃ catalyst calcined in air at 350°C and heated in flowing H₂ at 1 atm and 270°C: solid line represents subsequent reaction in flowing 67% H₂/33% CO; dashed line represents reaction in flowing 67% H₂/ 20% CO/13% CO₂.

FIG. 3. Temperature-programmed desorption of CO (a) and 5% CO₂/95% CO (b) from Cu–Cr₂O₃. Note the scaling factor difference for CO₂ in (a). Mass fragmentation of CO₂ to form CO + O has been taken into account for the CO⁺ peak.

concentration of stable surface Cu^+ sites established earlier (2), we would not expect an increase in CH₃OH activity for Cu– Cr₂O₃ as CO₂ is added to the feed stream.

Thus, the Cu⁺ responsible for CH₃OH formation in Cu-Cr₂O₃ would appear to be more stable than the Cu⁺ present in Cu-ZnO. Klier *et al.* (1) discuss the active Cu^+ in Cu–ZnO as being dissolved in the ZnO lattice, presumably as Cu⁺ ions substitutionally and/or interstitially positioned in the ZnO lattice. The concentration of this type of Cu^+ may be sensitive to the CO/CO₂ ratio, which can alter the concentrations of lattice oxygen and oxygen vacancies in the ZnO lattice. On the other hand, Courty et al. (3) have postulated that the active Cu^+ present in Cu-Cr₂O₃-containing catalysts exists in a Cu⁺-chromite phase. It would be expected that significant concentrations of Cu⁺ should be more stable when Cu⁺ is present as a surface compound than when Cu⁺ is in a ZnO lattice, given the limited solubility of Cu^+ in the ZnO lattice (1).

Finally, comparison of the TPD spectra in Fig. 3a with those in Fig. 3b reveals that CO_2 is competitively adsorbed on CO adsorption sites, in agreement with the observation of Klier *et al.* (1) for Cu–ZnO. The addition of 5% CO₂ to CO results in a significant CO₂ desorption peak at the same temperature as for CO desorption ($T \sim 135^{\circ}$ C). Thus, CO₂ at levels as low as 5% competes favorably with CO for adsorption sites, explaining why the CH₃OH activity in Fig. 1 drops sharply for CO₂ levels as low as 2%. Additional evidence of CO-site blockage by CO₂ can be found by examining the magnitudes of the CO desorption curves in Fig. 3; the amplitude of the CO desorption curve when CO₂ is present in the feed stream is $\sim 25\%$ smaller than when CO₂ is not present.

The high-temperature CO_2 desorption curves centered at ~280 and 300°C most likely represent CO_2 desorption from noncatalytic sites present on Cr_2O_3 or Cr_2O_3 like surfaces, as discussed by Burwell and co-workers (4).

In summary, the stability of Cu^+ responsible for CH₃OH formation in Cu-Cu₂O₃ catalysts is independent of the presence of CO₂ in the feed stream. Catalytically, the presence of CO₂ in the syngas inhibits the rate of CH₃OH formation, owing to the

noncatalytic, competitive adsorption of CO_2 on Cu^+ sites needed for CO adsorption.

REFERENCES

- Klier, K., Chatikavanij, R. G., Herman, R. G., and Simmons, G. W., J. Catal. 74, 343 (1982).
- 2. Apai, G., Monnier, J. R., and Hanrahan, M. J., J. Chem. Soc. Chem. Commun. 212 (1984).
- 3. Courty, P., Durand, D., Freund, E., and Sugier, A., J. Mol. Catal. 17, 241 (1982).
- Burwell, R. C., Jr., Haller, G. L., Taylor, K. C., and Read, J. F., "Advances in Catalysis," Vol. 20, p. 1. Academic Press, New York, 1969.

J. R. Monnier G. Apai M. J. Hanrahan

Research Laboratories Eastman Kodak Company Rochester, New York 14650

Received September 20, 1983